Intraspecific genetic variation is critical to robust toxicological predictions of aquatic contaminants

种内遗传变异对于水生污染物的可靠毒理学预测至关重要

阅读:9
作者:René S Shahmohamadloo, Seth M Rudman, Catherine I Clare, Judy A Westrick, Xueqi Wang, Luc De Meester, John M Fryxell

Abstract

Environmental risk assessment is a critical tool for protecting aquatic life and its effectiveness is predicated on predicting how natural populations respond to contaminants. Yet, routine toxicity testing typically examines only one genotype, which may render risk assessments inaccurate as populations are most often composed of genetically distinct individuals. To determine the importance of intraspecific variation in the translation of toxicity testing to populations, we quantified the magnitude of genetic variation within 20 Daphnia magna clones derived from one lake using whole genome sequencing and phenotypic assays. We repeated these assays across two exposure levels of microcystins, a cosmopolitan and lethal aquatic contaminant produced by harmful algal blooms. We found considerable intraspecific genetic variation in survival, growth, and reproduction, which was amplified by microcystins exposure. Finally, using simulations we demonstrate that the common practice of employing a single genotype to calculate toxicity tolerance failed to produce an estimate within the 95% confidence interval over half of the time. These results illuminate the importance of incorporating intraspecific genetic variation into toxicity testing to reliably predict how natural populations will respond to aquatic contaminants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。