Heterologous Ectoine Production in Escherichia coli: Optimization Using Response Surface Methodology

大肠杆菌中异源 Ectoine 的产生:使用响应面法进行优化

阅读:8
作者:I Putu Parwata, Deana Wahyuningrum, Sony Suhandono, Rukman Hertadi

Conclusion

This study is the first report on the expression of an ectoine gene cluster of Halomonas elongata BK-AG25 in E. coli BL21, under the control of the T7 promoter. Optimization of the level of nutrients in the medium, as well as the bioprocess condition using response surface methodology, has successfully increased the production of ectoine by the recombinant bacteria.

Methods

The ectoine gene cluster from the halophilic bacterium was isolated and inserted into an expression plasmid of pET30(a) and subsequently transformed into E. coli BL21 (DE3). Production of ectoine from the recombinant E. coli was investigated and then maximized by optimizing the level of nutrients in the medium, as well as the bioprocess conditions using response surface methodology. The experimental designs were performed using a central composite design.

Results

The recombinant E. coli successfully expressed the ectoine gene cluster of Halomonas elongata BK-AG25 under the control of the T7 promoter. The recombinant cell was able to produce ectoine, of which most were excreted into the medium. The optimization of ectoine production with the response surface methodology showed that the level of salt in the medium, the incubation temperature, the optical density of the bacteria before induction, and the final concentration of the inducer gave a significant effect on ectoine production by the recombinant E. coli. Interestingly, the level of salt in the medium and the incubation temperature showed an inverse effect on the production of intracellular and extracellular ectoine by the recombinant cell. At the optimum conditions, the production yield was about 418 mg ectoine/g cdw (cell dry weight) after 12 hours of incubation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。