A combined AI and cell biology approach surfaces targets and mechanistically distinct Inflammasome inhibitors

人工智能与细胞生物学相结合的方法揭示了靶点和机制不同的炎症小体抑制剂

阅读:6
作者:Daniel Chen, Tempest Plott, Michael Wiest, Will Van Trump, Ben Komalo, Dat Nguyen, Charlie Marsh, Jarred Heinrich, Colin J Fuller, Lauren Nicolaisen, Elisa Cambronero, An Nguyen, Christian Elabd, Francesco Rubbo, Rachel DeVay Jacobson

Abstract

Inflammasomes are protein complexes that mediate innate immune responses whose dysregulation has been linked to a spectrum of acute and chronic human conditions, which dictates therapeutic development that is aligned with disease variability. We designed a scalable, physiologic high-content imaging assay in human PBMCs that we analyzed using a combination of machine-learning and cell biology methods. This resulted in a set of biologically interpretable readouts that can resolve a spectrum of cellular states associated with inflammasome activation and inhibition. These methods were applied to a phenotypic screen that surfaced mechanistically distinct inflammasome inhibitors from an annotated 12,000 compound library. A set of over 100 inhibitors, including an array of Raf-pathway inhibitors, were validated in downstream functional assays. This approach demonstrates how complementary machine learning-based methods can be used to generate profiles of cellular states associated with different stages of complex biological pathways and yield compound and target discovery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。