Single-cell multiomics reveals simvastatin inhibits pan-cancer epithelial-mesenchymal transition via the MEK/ERK pathway in XBP1+ mast cells

单细胞多组学揭示辛伐他汀通过 XBP1+ 肥大细胞中的 MEK/ERK 通路抑制泛癌上皮-间质转化

阅读:5
作者:Sen Lin #, Huimin Zhang #, Ruiqi Zhao #, Zhulin Wu, Weiqing Zhang, Mengjiao Yu, Bei Zhang, Lanyue Ma, Danfei Li, Lisheng Peng, Weijun Luo

Abstract

Distant metastasis is the leading cause of cancer-related mortality, and achieving survival benefits through advancements in systemic therapy remains challenging. Mast cells play a dual role in shaping the tumor microenvironment (TME) and influencing distant metastasis, underscoring the significant research value of targeting mast cells for systemic therapy in advanced cancer. We investigated variations in mast cell infiltration levels in primary and metastatic malignancies using immunocyte infiltration analysis. Mast cell subsets were identified from pan-cancer distant metastasis single-cell sequencing data through dimensionality reduction clustering and cell type annotation, combined with cell trajectory and communication network analyses. A prognostic model was established using WGCNA and 12 machine learning algorithms to identify potential mast cell targets. Drug sensitivity and Mendelian randomization analyses were conducted to select potential drugs targeting mast cells, and their effects on epithelial-mesenchymal transition (EMT) were validated through in vitro experiments, including wound healing, transwell, and western blot assays. Results revealed that activated mast cells show increased infiltration in metastatic tumors, correlating with poor survival duration. XBP1+ mast cells were identified as key components of the inhibitory TME, potentially involved in EMT activation. Simvastatin was identified as a potential drug, reversing EMT induced by XBP1+ mast cells in pan-cancer. Aberrant activation of MEK/ERK signaling in XBP1+ mast cells can stimulate cancer cell EMT by modulating degranulation, while Simvastatin can inhibit EMT by suppressing degranulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。