Resveratrol inhibits ferroptosis in the lung tissues of heat stroke-induced rats via the Nrf2 pathway

白藜芦醇通过 Nrf2 通路抑制中暑大鼠肺组织铁死亡

阅读:9
作者:Liwen Du #, Xueqi Zhu #, Zhenluo Jiang, Weidong Wang, Peng Liu, Leilei Zhu, Fangqi Zhang

Background

Heat stroke (HS) can lead to the development of pulmonary ferroptosis. The inhibition of pulmonary ferroptosis during HS improves patient prognosis. The

Conclusions

RES effectively protected HS rats from lung injury, inhibited the accumulation of Fe2+, ROS, and MDA in the lung, and upregulated FTH1, GPX4, SLC7A11, Nrf2, NQO1, and HO-1.

Methods

Heat stress was induced in Beas-2B cells and lung injury was induced in HS rats at an ambient temperature of 42 °C. The anti-oxidative stress and anti-ferroptotic effects of RES were confirmed through tail vein injection of nuclear factor-2 associated factor (Nrf2) shRNA recombinant adeno-associated virus 6 (AAV6-shNrf2).

Results

RES treatment attenuated the upregulation of reactive oxygen species (ROS) and malondialdehyde (MDA) levels and alleviated glutathione inhibition in HS. In addition, RES treatment reduced the accumulation of Fe2+ in heat-stressed Beas-2B cells and increased the ferroptosis resistance-related proteins FTH1, GPX4, and SLC7A11 as well as the anti-oxidative stress pathway proteins Nrf2, NQO1, and HO-1. The antioxidant and anti-ferroptotic effects of RES in heat-stressed Beas-2B cells were effectively reversed upon treatment with Nrf2-IN-1, an Nrf2 pathway inhibitor. In the HS rat model, the antioxidant and anti-ferroptotic effects of RES were reversed by an ambient temperature of 42 °C and relative humidity of 60 ± 5%. Conclusions: RES effectively protected HS rats from lung injury, inhibited the accumulation of Fe2+, ROS, and MDA in the lung, and upregulated FTH1, GPX4, SLC7A11, Nrf2, NQO1, and HO-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。