Evaluation of the Effects of Human Dental Pulp Stem Cells on the Biological Phenotype of Hypertrophic Keloid Fibroblasts

人牙髓干细胞对增生性瘢痕疙瘩成纤维细胞生物学表型影响的评价

阅读:4
作者:Ming Yan, Ling-Ling Fu, Ola A Nada, Li-Ming Chen, Martin Gosau, Ralf Smeets, Hong-Chao Feng, Reinhard E Friedrich

Conclusions

The co-culture of HDPSCs inhibits the migration of HKFs and the expression of pro-fibrotic genes, while promoting the expression of anti-fibrotic genes. HDPSCs' co-culture also inhibits the synthesis of the extracellular matrix by HKFs, whereas it does not affect the proliferation and apoptosis of HKFs. Therefore, it can be concluded that HDPSCs can themselves be used as a tool for restraining/hindering the initiation or progression of fibrotic tissue.

Methods

Human normal fibroblasts (HNFs) and human keloid fibroblasts (HKFs) were cultured alone and in combination with HDPSCs using a transwell cell-contact-independent cell culture system. The effects of HDPSCs on HKFs were tested using a CCK-8 assay, live/dead staining assay, quantitative polymerase chain reaction, Western blot and immunofluorescence microscopy.

Objective

Despite numerous existing treatments for keloids, the responses in the clinic have been disappointing, due to either low efficacy or side effects. Numerous studies dealing with preclinical and clinical trials have been published about effective therapies for fibrotic diseases using mesenchymal stem cells; however, no research has yet been reported to scientifically investigate the effect of human dental pulp stem cells (HDPSCs) on the treatment of keloids. The objective is to provide an experimental basis for the application of stem cells in the treatment of keloids.

Results

HDPSCs did not inhibit the proliferation nor the apoptosis of HKFs and HNFs. HDPSCs did, however, inhibit their migration. Furthermore, HDPSCs significantly decreased the expression of profibrotic genes (CTGF, TGF-β1 and TGF-β2) in HKFs and KNFs (p < 0.05), except for CTGF in HNFs. Moreover, HDPSCs suppressed the extracellular matrix (ECM) synthesis in HKFs, as indicated by the decreased expression of collagen I as well as the low levels of hydroxyproline in the cell culture supernatant (p < 0.05). Conclusions: The co-culture of HDPSCs inhibits the migration of HKFs and the expression of pro-fibrotic genes, while promoting the expression of anti-fibrotic genes. HDPSCs' co-culture also inhibits the synthesis of the extracellular matrix by HKFs, whereas it does not affect the proliferation and apoptosis of HKFs. Therefore, it can be concluded that HDPSCs can themselves be used as a tool for restraining/hindering the initiation or progression of fibrotic tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。