A Photopolymerized Hydrogel System with Dual Stiffness Gradients Reveals Distinct Actomyosin-Based Mechano-Responses in Fibroblast Durotaxis

具有双刚度梯度的光聚合水凝胶系统揭示了成纤维细胞硬膜外趋化中基于肌动球蛋白的不同机械反应

阅读:4
作者:Reem M Hakeem, Bhagawat C Subramanian, Max A Hockenberry, Zayna T King, Mitchell T Butler, Wesley R Legant, James E Bear

Abstract

Durotaxis, migration of cells directed by a stiffness gradient, is critical in development and disease. To distinguish durotaxis-specific migration mechanisms from those on uniform substrate stiffnesses, we engineered an all-in-one photopolymerized hydrogel system containing areas of stiffness gradients with dual slopes (steep and shallow), adjacent to uniform stiffness (soft and stiff) regions. While fibroblasts rely on nonmuscle myosin II (NMII) activity and the LIM-domain protein Zyxin, ROCK and the Arp2/3 complex are surprisingly dispensable for durotaxis on either stiffness gradient. Additionally, loss of either actin-elongator Formin-like 3 (FMNL3) or actin-bundler fascin has little impact on durotactic response on stiffness gradients. However, lack of Arp2/3 activity results in a filopodia-based durotactic migration that is equally as efficient as that of lamellipodia-based durotactic migration. Importantly, we uncover essential and specific roles for FMNL3 and fascin in the formation and asymmetric distribution of filopodia during filopodia-based durotaxis response to the stiffness gradients. Together, our tunable all-in-one hydrogel system serves to identify both conserved as well as distinct molecular mechanisms that underlie mechano-responses of cells experiencing altered slopes of stiffness gradients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。