Highly Localized Chemical Sampling at Subsecond Temporal Resolution Enabled with a Silicon Nanodialysis Platform at Nanoliter per Minute Flows

利用硅纳米透析平台以每分钟纳升的流量实现亚秒时间分辨率的高度局部化学采样

阅读:8
作者:Insu Park, Sungho Kim, Christopher Kenji Brenden, Weihua Shi, Hrishikesh Iyer, Rashid Bashir, Yurii Vlasov

Abstract

Microdialysis (MD) is a versatile and powerful technique for chemical profiling of biological tissues and is widely used for quantification of neurotransmitters, neuropeptides, metabolites, biomarkers, and drugs in the central nervous system as well as in dermatology, ophthalmology, and pain research. However, MD performance is severely limited by fundamental tradeoffs between chemical sensitivity, spatial resolution, and temporal response. Here, by using wafer-scale silicon microfabrication, we develop and demonstrate a nanodialysis (ND) sampling probe that enables highly localized chemical sampling with 100 μm spatial resolution and subsecond temporal resolution at high recovery rates. These performance metrics, which are 100-1000× superior to existing MD approaches, are enabled by a 100× reduction of the microfluidic channel cross-section, a corresponding drastic 100× reduction of flow rates to exceedingly slow few nL/min flows, and integration of a nanometer-thin nanoporous membrane with high transport flux into the probe sampling area. Miniaturized ND probes may allow for the minimally invasive and highly localized sampling and chemical profiling in live biological tissues with high spatiotemporal resolution for clinical, biomedical, and pharmaceutical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。