25-Hydroxycholesterol modulates microglial function and exacerbates Alzheimer's disease pathology: mechanistic insights and therapeutic potential of cholesterol esterification inhibition

25-羟基胆固醇调节小胶质细胞功能并加剧阿尔茨海默病病理:胆固醇酯化抑制的机制见解和治疗潜力

阅读:7
作者:Hayoung Choi #, Haeng Jun Kim #, Sang-Eun Lee, Hyun Ho Song, Jieun Kim, Jihui Han, June-Hyun Jeong, Do Yup Lee, Sunghoe Chang, Inhee Mook-Jung

Abstract

This study investigates the role of 25-hydroxycholesterol (25HC), a metabolite produced by cholesterol hydroxylase encoded by the Ch25h gene, in modulating microglial function and its potential implications in Alzheimer's disease (AD) pathology. We demonstrated that 25HC impairs microglial surveillance, reduces phagocytic capacity, and increases the production of pro-inflammatory cytokines. In vivo two-photon microscopy revealed that 25HC administration diminishes microglial response to brain lesions, while flow cytometry confirmed reduced phagocytosis in both in vivo and in vitro models. Additionally, amyloid-beta (Aβ) was shown to upregulate Ch25h expression and elevate 25HC levels in microglia, exacerbating these functional impairments. Mechanistically, 25HC was found to enhance cholesterol esterification, disrupt cell membrane dynamics, and further reduce microglial mobility and phagocytosis. Treatment with Avasimibe, a cholesterol esterification inhibitor, restored membrane dynamics and microglial function, leading to attenuated AD pathology in a 5XFAD mouse model. These findings suggest that 25HC-induced changes in microglial function contribute to AD progression, and targeting cholesterol metabolism could offer therapeutic potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。