Exosomes derived from atorvastatin-modified bone marrow dendritic cells ameliorate experimental autoimmune myasthenia gravis by up-regulated levels of IDO/Treg and partly dependent on FasL/Fas pathway

阿托伐他汀修饰的骨髓树突状细胞来源的外泌体通过上调 IDO/Treg 水平并部分依赖于 FasL/Fas 通路改善实验性自身免疫性重症肌无力

阅读:7
作者:Xiao-Li Li, Heng Li, Min Zhang, Hua Xu, Long-Tao Yue, Xin-Xin Zhang, Shan Wang, Cong-Cong Wang, Yan-Bin Li, Ying-Chun Dou, Rui-Sheng Duan

Background

Previously, we have demonstrated that spleen-derived dendritic cells (DCs) modified with atorvastatin suppressed immune responses of experimental autoimmune myasthenia gravis (EAMG). However, the effects of exosomes derived from atorvastatin-modified bone marrow DCs (BMDCs) (statin-Dex) on EAMG are still unknown.

Conclusions

Our data suggest that atorvastatin-induced immature BMDCs are able to secrete tolerogenic Dex, which are involved in the suppression of immune responses in EAMG rats. Importantly, our study provides a novel cell-free approach for the treatment of autoimmune diseases.

Methods

Immunophenotypical characterization of exosomes from atorvastatin- and dimethylsulfoxide (DMSO)-modified BMDCs was performed by electron microscopy, flow cytometry, and western blotting. In order to investigate whether statin-DCs-derived exosomes (Dex) could induce immune tolerance in EAMG, we administrated statin-Dex, control-Dex, or phosphate-buffered saline (PBS) into EAMG rats via tail vein injection. The tracking of injected Dex and the effect of statin-Dex injection on endogenous DCs were performed by immunofluorescence and flow cytometry, respectively. The number of Foxp3(+) cells in thymuses was examined using immunocytochemistry. Treg cells, cytokine secretion, lymphocyte proliferation, cell viability and apoptosis, and the levels of autoantibody were also carried out to evaluate the effect of statin-Dex on EAMG rats. To further investigate the involvement of FasL/Fas in statin-Dex-induced apoptosis, the underlying mechanisms were studied by FasL neutralization assays.

Results

Our data showed that the systemic injection of statin-Dex suppressed the clinical symptoms of EAMG rats. These statin-Dex had immune regulation functions in immune organs, such as the spleen, thymus, and popliteal and inguinal lymph nodes. Furthermore, statin-Dex exerted their immunomodulatory effects in vivo by decreasing the expression of CD80, CD86, and MHC class II on endogenous DCs. Importantly, the therapeutic effects of statin-Dex on EAMG rats were associated with up-regulated levels of indoleamine 2,3-dioxygenase (IDO)/Treg and partly dependent on FasL/Fas pathway, which finally resulted in decreased synthesis of anti-R97-116 IgG, IgG2a, and IgG2b antibodies. Conclusions: Our data suggest that atorvastatin-induced immature BMDCs are able to secrete tolerogenic Dex, which are involved in the suppression of immune responses in EAMG rats. Importantly, our study provides a novel cell-free approach for the treatment of autoimmune diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。