Geminin regulates the transcriptional and epigenetic status of neuronal fate-promoting genes during mammalian neurogenesis

在哺乳动物神经发生过程中,Geminin 调节神经元命运促进基因的转录和表观遗传状态

阅读:7
作者:Dhananjay Yellajoshyula, Jong-won Lim, Dominic M Thompson Jr, Jacob S Witt, Ethan S Patterson, Kristen L Kroll

Abstract

Regulating the transition from lineage-restricted progenitors to terminally differentiated cells is a central aspect of nervous system development. Here, we investigated the role of the nucleoprotein geminin in regulating neurogenesis at a mechanistic level during both Xenopus primary neurogenesis and mammalian neuronal differentiation in vitro. The latter work utilized neural cells derived from embryonic stem and embryonal carcinoma cells in vitro and neural stem cells from mouse forebrain. In all of these contexts, geminin antagonized the ability of neural basic helix-loop-helix (bHLH) transcription factors to activate transcriptional programs promoting neurogenesis. Furthermore, geminin promoted a bivalent chromatin state, characterized by the presence of both activating and repressive histone modifications, at genes encoding transcription factors that promote neurogenesis. This epigenetic state restrains the expression of genes that regulate commitment of undifferentiated stem and neuronal precursor cells to neuronal lineages. However, maintaining geminin at high levels was not sufficient to prevent terminal neuronal differentiation. Therefore, these data support a model whereby geminin promotes the neuronal precursor cell state by modulating both the epigenetic status and expression of genes encoding neurogenesis-promoting factors. Additional developmental signals acting in these cells can then control their transition toward terminal neuronal or glial differentiation during mammalian neurogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。