miR-142 downregulation alleviates rat PTSD-like behaviors, reduces the level of inflammatory cytokine expression and apoptosis in hippocampus, and upregulates the expression of fragile X mental retardation protein

miR-142 下调可减轻大鼠 PTSD 样行为,降低海马炎症细胞因子表达和细胞凋亡水平,并上调脆性 X 智力低下蛋白的表达

阅读:12
作者:Peng-Yin Nie, Lei Tong, Ming-Da Li, Chang-Hai Fu, Jun-Bo Peng, Li-Li Ji

Background

FMRP is a selective mRNA-binding protein that regulates protein synthesis at synapses, and its loss may lead to the impairment of trace fear memory. Previously, we found that FMRP levels in the hippocampus of rats with post-traumatic stress disorder (PTSD) were decreased. However, the mechanism underlying these changes remains unclear.

Conclusions

The results revealed miR-142 downregulation could alleviate PTSD-like behaviors through attenuating neuroinflammation in the hippocampus of SPS rats by binding to FMRP.

Methods

Forty-eight male Sprague-Dawley rats were randomly divided into four groups. The experimental groups were treated with the single-prolonged stress (SPS) procedure and injected with a lentivirus-mediated inhibitor of miR-142-5p. Behavior test as well as morphology and molecular biology experiments were performed to detect the effect of miR-142 downregulation on PTSD, which was further verified by in vitro experiments.

Results

We found that silence of miRNA-142 (miR-142), an upstream regulator of FMRP, could alleviate PTSD-like behaviors of rats exposed to the SPS paradigm. MiR-142 silence not only decreased the levels of proinflammatory mediators, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α, but also increased the expressive levels of synaptic proteins including PSD95 and synapsin I in the hippocampus, which was one of the key brain regions associated with PTSD. We further detected that miR-142 silence also downregulated the transportation of nuclear factor kappa-B (NF-κB) into the nuclei of neurons and might further affect the morphology of neurons. Conclusions: The results revealed miR-142 downregulation could alleviate PTSD-like behaviors through attenuating neuroinflammation in the hippocampus of SPS rats by binding to FMRP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。