Deciphering the immune microenvironment of a tissue by digital imaging and cognition network

通过数字成像和认知网络解读组织的免疫微环境

阅读:7
作者:A Lopès, Al H Cassé, E Billard, E Boulcourt-Sambou, G Roche, C Larois, N Barnich, S Naimi, M Bonnet, B Dumas

Abstract

Evidence has highlighted the importance of immune cells in various gut disorders. Both the quantification and localization of these cells are essential to the understanding of the complex mechanisms implicated in these pathologies. Even if quantification can be assessed (e.g., by flow cytometry), simultaneous cell localization and quantification of whole tissues remains technically challenging. Here, we describe the use of a computer learning-based algorithm created in the Tissue Studio interface that allows for a semi-automated, robust and rapid quantitative analysis of immunofluorescence staining on whole colon sections according to their distribution in different tissue areas. Indeed, this algorithm was validated to characterize gut immune microenvironment. Its application to the preclinical colon cancer APCMin/+ mouse model is illustrated by the simultaneous counting of total leucocytes and T cell subpopulations, in the colonic mucosa, lymphoid follicles and tumors. Moreover, we quantify T cells in lymphoid follicles for which quantification is not possible with classical methods. Thus, this algorithm is a new and robust preclinical research tool, for investigating immune contexture exemplified by T cells but it is also applicable to other immune cells such as other myeloid and lymphoid populations or other cellular phenomenon along mouse gut.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。