Mechanical and in vitro biological properties of uniform and graded Cobalt-chrome lattice structures in orthopedic implants

骨科植入物中均匀和分级钴铬晶格结构的机械和体外生物学特性

阅读:4
作者:Stefania Pagani, Erica Liverani, Gianluca Giavaresi, Angela De Luca, Claudio Belvedere, Alessandro Fortunato, Alberto Leardini, Milena Fini, Luca Tomesani, Paolo Caravaggi

Abstract

Human bones are biological examples of functionally graded lattice capable to withstand large in vivo loading and allowing optimal stress distribution. Disruption of bone integrity may require biocompatible implants capable to restore the original bone structure and properties. This study aimed at comparing mechanical properties and biological behavior in vitro of uniform (POR-FIX) and graded (POR-VAR) Cobalt-chrome alloy lattice structures manufactured via Selective Laser Melting. In compression, the POR-VAR equivalent maximum stress was about 2.5 times lower than that of the POR-FIX. According to the DIC analysis, the graded lattice structures showed a stratified deformation associated to unit cells variation. At each timepoint, osteoblast cells were observed to colonize the surface and the first layer of both scaffolds. Cell activity was always significantly higher in the POR-VAR (p < 0.0005). In terms of gene expression, the OPG/RANKL ratio increased significantly over time (p < 0.0005) whereas IL1β and COX2 significantly decreased (7 day vs 1 day; p < 0.0005) in both scaffolds. Both uniform- and graded-porosity scaffolds provided a suitable environment for osteoblasts colonization and proliferation, but graded structures seem to represent a better solution to improve stress distribution between implant and bone of orthopedic implants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。