Exomap1 mouse: A transgenic model for in vivo studies of exosome biology

Exomap1小鼠:用于外泌体生物学体内研究的转基因模型

阅读:7
作者:Francis K Fordjour, Sarah Abuelreich, Xiaoman Hong, Emeli Chatterjee, Valeria Lallai, Martin Ng, Andras Saftics, Fengyan Deng, Natacha Carnel-Amar, Hiroaki Wakimoto, Kazuhide Shimizu, Malia Bautista, Tuan Anh Phu, Ngan K Vu, Paige C Geiger, Robert L Raffai, Christie D Fowler, Saumya Das, Lane K Chri

Abstract

Exosomes are small extracellular vesicles (sEVs) of ~30-150 nm in diameter that are enriched in exosome marker proteins and play important roles in health and disease. To address large unanswered questions regarding exosome biology in vivo, we created the Exomap1 transgenic mouse, which in response to Cre recombinase expresses the most highly enriched exosomal marker protein known, human CD81, fused to mNeonGreen (HsCD81mNG), and prior to Cre expresses a mitochondrial red fluorescent protein. Validation of the exomap1 mouse with eight distinct Cre drivers demonstrated that HsCD81mNG was expressed only in response to Cre, that murine cells correctly localized HsCD81mNG to the plasma membrane, and that this led to the secretion of HsCD81mNG in EVs that had the size (~70-80 nm), topology, and composition of exosomes. Furthermore, cell type-specific activation of the exomap1 transgene allowed us to use quantitative single molecule localization microscopy to calculate the cell type-specific contribution to biofluid exosome populations. Specifically, we show that neurons contribute ~1% to plasma and cerebrospinal fluid exosome populations whereas hepatocytes contribute ~15% to plasma exosome populations, numbers that reflect the known vascular permeabilities of brain and liver. These observations validate the use of Exomap1 mouse models for in vivo studies of exosome biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。