Catheter-based Intramyocardial Injection of FGF1 or NRG1-loaded MPs Improves Cardiac Function in a Preclinical Model of Ischemia-Reperfusion

通过导管向心肌内注射 FGF1 或 NRG1 载药 MP 可改善缺血-再灌注临床前模型中的心脏功能

阅读:5
作者:Elisa Garbayo, Juan José Gavira, Manuel Garcia de Yebenes, Beatriz Pelacho, Gloria Abizanda, Hugo Lana, María José Blanco-Prieto, Felipe Prosper

Abstract

Cardiovascular protein therapeutics such as neuregulin (NRG1) and acidic-fibroblast growth factor (FGF1) requires new formulation strategies that allow for sustained bioavailability of the drug in the infarcted myocardium. However, there is no FDA-approved injectable protein delivery platform due to translational concerns about biomaterial administration through cardiac catheters. We therefore sought to evaluate the efficacy of percutaneous intramyocardial injection of poly(lactic-co-glycolic acid) microparticles (MPs) loaded with NRG1 and FGF1 using the NOGA MYOSTAR injection catheter in a porcine model of ischemia-reperfusion. NRG1- and FGF1-loaded MPs were prepared using a multiple emulsion solvent-evaporation technique. Infarcted pigs were treated one week after ischemia-reperfusion with MPs containing NRG1, FGF1 or non-loaded MPs delivered via clinically-translatable percutaneous transendocardial-injection. Three months post-treatment, echocardiography indicated a significant improvement in systolic and diastolic cardiac function. Moreover, improvement in bipolar voltage and decrease in transmural infarct progression was demonstrated by electromechanical NOGA-mapping. Functional benefit was associated with an increase in myocardial vascularization and remodeling. These findings in a large animal model of ischemia-reperfusion demonstrate the feasibility and efficacy of using MPs as a delivery system for growth factors and provide strong evidence to move forward with clinical studies using therapeutic proteins combined with catheter-compatible biomaterials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。