Nanomechanical Induction of Autophagy-Related Fluorescence in Single Cells with Atomic Force Microscopy

利用原子力显微镜进行单细胞自噬相关荧光的纳米机械诱导

阅读:5
作者:Bin Li, Yuhui Wei, Qian Li, Nan Chen, Jiang Li, Lin Liu, Jinjin Zhang, Ying Wang, Yanhong Sun, Jiye Shi, Lihua Wang, Zhifeng Shao, Jun Hu, Chunhai Fan

Abstract

Mechanistic understanding of how living systems sense, transduce, and respond to mechanical cues has important implications in development, physiology, and therapy. Here, the authors use an integrated atomic force microscope (AFM) and brightfield/epifluorescent microscope platform to precisely simulate living single cells or groups of cells under physiological conditions, in real time, concomitantly measuring the single-cell autophagic response and its transmission to neighboring cells. Dual-color fluorescence monitoring of the cellular autophagic response reveals the dynamics of autophagosome formation, degradation, and induction in neighboring contacting and noncontacting cells. Autophagosome formation is dependent on both the applied force and contact area of the AFM tip. More importantly, the enhancement of the autophagic responses in neighboring cells via a gap junction-dependent mechanism is observed. This AFM-based nanoacupuncture platform can serve as a tool for elucidating the primary mechanism underlying mechanical stimulation of living systems and other biomechanical therapeutics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。