Enhancing antibody affinity through experimental sampling of non-deleterious CDR mutations predicted by machine learning

通过对机器学习预测的非有害CDR突变进行实验取样来增强抗体亲和力

阅读:2
作者:Thomas Clark # ,Vidya Subramanian # ,Akila Jayaraman ,Emmett Fitzpatrick ,Ranjani Gopal ,Niharika Pentakota ,Troy Rurak ,Shweta Anand ,Alexander Viglione ,Rahul Raman ,Kannan Tharakaraman ,Ram Sasisekharan

Abstract

The application of machine learning (ML) models to optimize antibody affinity to an antigen is gaining prominence. Unfortunately, the small and biased nature of the publicly available antibody-antigen interaction datasets makes it challenging to build an ML model that can accurately predict binding affinity changes due to mutations (ΔΔG). Recognizing these inherent limitations, we reformulated the problem to ask whether an ML model capable of classifying deleterious vs non-deleterious mutations can guide antibody affinity maturation in a practical setting. To test this hypothesis, we developed a Random Forest classifier (Antibody Random Forest Classifier or AbRFC) with expert-guided features and integrated it into a computational-experimental workflow. AbRFC effectively predicted non-deleterious mutations on an in-house validation dataset that is free of biases seen in the publicly available training datasets. Furthermore, experimental screening of a limited number of predictions from the model (<10^2 designs) identified affinity-enhancing mutations in two unrelated SARS-CoV-2 antibodies, resulting in constructs with up to 1000-fold increased binding to the SARS-COV-2 RBD. Our findings indicate that accurate prediction and screening of non-deleterious mutations using machine learning offers a powerful approach to improving antibody affinity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。