Alterations of serine racemase expression determine proliferation and differentiation of neuroblastoma cells

丝氨酸消旋酶表达的改变决定神经母细胞瘤细胞的增殖和分化

阅读:4
作者:He Zhang, Jinfang Lu, Huiping Shang, Juan Chen, Zhengxiu Lin, Yimei Liu, Xianwei Wang, Liping Song, Xue Jiang, Haiyan Jiang, Jiandong Shi, Dongsheng Yan, Shengzhou Wu

Abstract

Although the role of serine racemase (SR) in neuropsychiatric disorders has been extensively studied, its role in cell proliferation and differentiation remains unclear. Deletion of Srr, the encoding gene for SR, has been shown to reduce dendritic arborization and dendritic spine density in the brains of adult mice, whereas increased SR levels have been associated with differentiation in cell cultures. Previously, we demonstrated that valproic acid induces differentiation in the N2A neuroblastoma cell line, and that this differentiation is associated with increased SR expression. These observations suggest that SR may have a role in cell proliferation and differentiation. We herein found that both valproic acid and all-trans retinoic acid induced N2A differentiation. In contrast, knockdown of SR reduced levels of differentiation, increased N2A proliferation, promoted cell cycle entry, and modulated expression of cell cycle-related proteins. To further evaluate the effects of SR expression on cell proliferation and differentiation, we used an in vivo model of neuroblastoma in nude mice. N2A cells stably expressing scramble shRNA (Srrwt -N2A) or specific Srr shRNA (Srrkd -N2A) were subcutaneously injected into nude mice. The weights and volumes of Srrwt -N2A-derived tumors were lower than Srrkd -N2A-derived tumors. Furthermore, Srrwt -N2A-derived tumors were significantly mitigated by intraperitoneal injection of valproic acid, whereas Srrkd -N2A-derived tumors were unaffected. Taken together, our findings demonstrate for the first time that alterations in SR expression determine the transition between proliferation and differentiation in neural progenitor cells. Thus, in addition to its well-established roles in neuropsychiatric disorders, our study has highlighted a novel role for SR in cell proliferation and differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。