Atsttrin reduces lipopolysaccharide-induced neuroinflammation by inhibiting the nuclear factor kappa B signaling pathway

Atsttrin 通过抑制核因子 κB 信号通路减少脂多糖诱导的神经炎症

阅读:19
作者:Lian Liu, Yuan Qu, Yi Liu, Hua Zhao, He-Cheng Ma, Ahmed Fayyaz Noor, Chang-Jiao Ji, Lin Nie, Meng Si, Lei Cheng

Abstract

Progranulin is closely related to neuronal survival in a neuroinflammatory mouse model and attenuates inflammatory reactions. Atsttrin is an engineered protein composed of three progranulin fragments and has been shown to have an effect similar to that of progranulin. Atsttrin has anti-inflammatory actions in multiple arthritis mouse models, and it protects against further arthritis development. However, whether Atsttrin has a role in neuroinflammation remains to be elucidated. In this study, we produced a neuroinflammatory mouse model by intracerebroventricular injection of 1 μL lipopolysaccharide (10 μg/μL). Atsttrin (2.5 mg/kg) was administered via intraperitoneal injection every 3 days over a period of 7 days before intracerebroventricular injection of 1 μL lipopolysaccharide (10 μg/μL). In addition, astrocyte cultures were treated with 0, 100 or 300 ng/mL lipopolysaccharide, with 200 ng/mL Atsttrin simultaneously. Immunohistochemistry, enzyme-linked immunosorbent assay and real-time reverse transcription-polymerase chain reaction were performed to examine the protein and mRNA levels of inflammatory mediators and to assess activation of the nuclear factor kappa B signaling pathway. Progranulin expression in the brain of wild-type mice and in astrocyte cultures was increased after lipopolysaccharide administration. The protein and mRNA expression levels of tumor necrosis factor-α, interleukin-1β and inducible nitric oxide synthase were increased in the brain of progranulin knockout mice after lipopolysaccharide administration. Atsttrin treatment reduced the lipopolysaccharide-induced increase in the protein and mRNA levels of tumor necrosis factor-α, interleukin-1β, matrix metalloproteinase-3 and inducible nitric oxide synthase in the brain of progranulin knockout mice. Atsttrin also reduced the expression of cyclooxygenase-2, inducible nitric oxide synthase and matrix metalloproteinase 3 mRNA in lipopolysaccharide-treated astrocytes in vitro, and decreased the concentration of tumor necrosis factor a and interleukin-1β in the supernatant. Furthermore, Atsttrin significantly reduced the levels of phospho-nuclear factor kappa B inhibitor a in the brain of lipopolysaccharide-treated progranulin knockout mice and astrocytes, and it decreased the expression of nuclear factor kappa B2 in astrocytes. Collectively, our findings show that the anti-neuroinflammatory effect of Atsttrin involves inhibiton of the nuclear factor kappa B signaling pathway, and they suggest that Atsttrin may have clinical potential in neuroinflammatory therapy. The study was approved by the Animal Ethics Committee of Qilu Hospital of Shandong University, China (approval No. KYLL-2015(KS)-088) on February 10, 2015.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。