The miR-6240 target gene Igf2bp3 promotes myoblast fusion by enhancing myomaker mRNA stability

miR-6240 靶基因 Igf2bp3 通过增强肌细胞 mRNA 稳定性来促进成肌细胞融合

阅读:15
作者:Yuxin Huang #, Wei Wang #, Xinhao Fan, Xiaoqin Liu, Weiwei Liu, Zishuai Wang, Yixing Li, Yalan Yang, Zhonglin Tang

Background

Myoblast fusion plays a crucial role in myogenesis. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) functions as an RNA N6-methyladenosine reader and exerts important roles in various biological processes. While our prior study suggested Igf2bp3 contributes to myogenesis, its molecular regulatory mechanism is largely unclear.

Conclusions

Our study unveils Igf2bp3 as a novel post-transcriptional regulator of myoblast fusion through the miR-6240/Mymk axis, significantly contributing to our understanding of skeletal muscle development.

Methods

Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot were used for gene expression analysis. siRNA and CRISPRi technologies were conducted to knockdown the expression of Igf2bp3. CRISPR/Cas9 technology was performed to knockout Igf2bp3. The Igf2bp3 overexpression vector was designed using the pcDNA3.1(+) vector. Immunofluorescence detection was employed for subcellular localization and cell differentiation analysis. Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were conducted for cell proliferation and fusion detection. The dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were utilized for regulatory mechanism analysis of Igf2bp3.

Results

The overexpression of Igf2bp3 enhances myoblast fusion while knockdown of Igf2bp3 blocks the formation of myotubes. miR-6240 promotes myoblast proliferation while preventing myoblast differentiation and fusion by targeting the 3' untranslated rgion (UTR) of Igf2bp3. Notably, the impacts of miR-6240 mimics on myoblast proliferation, differentiation, and fusion can be effectively counteracted by the overexpression of Igf2bp3. Moreover, our findings elucidate a direct interaction between Igf2bp3 and the myoblast fusion factor myomaker (Mymk). Igf2bp3 binds to Mymk to enhance its mRNA stability. This interaction results in increased expression of Mymk and heightened myoblast fusion. Conclusions: Our study unveils Igf2bp3 as a novel post-transcriptional regulator of myoblast fusion through the miR-6240/Mymk axis, significantly contributing to our understanding of skeletal muscle development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。