Characterization of thiol-based redox modifications of Brassica napus SNF1-related protein kinase 2.6-2C

油菜 SNF1 相关蛋白激酶 2.6-2C 的硫醇基氧化还原修饰的表征

阅读:5
作者:Tianyi Ma, Mi-Jeong Yoo, Tong Zhang, Lihong Liu, Jin Koh, Wen-Yuan Song, Alice C Harmon, Wei Sha, Sixue Chen

Abstract

Sucrose nonfermenting 1-related protein kinase 2.6 (SnRK2.6), also known as Open Stomata 1 (OST1) in Arabidopsis thaliana, plays a pivotal role in abscisic acid (ABA)-mediated stomatal closure. Four SnRK2.6 paralogs were identified in the Brassica napus genome in our previous work. Here we studied one of the paralogs, BnSnRK2.6-2C, which was transcriptionally induced by ABA in guard cells. Recombinant BnSnRK2.6-2C exhibited autophosphorylation activity and its phosphorylation sites were mapped. The autophosphorylation activity was inhibited by S-nitrosoglutathione (GSNO) and by oxidized glutathione (GSSG), and the inhibition was reversed by reductants. Using monobromobimane (mBBr) labeling, we demonstrated a dose-dependent modification of BnSnRK2.6-2C by GSNO. Furthermore, mass spectrometry analysis revealed previously uncharacterized thiol-based modifications including glutathionylation and sulfonic acid formation. Of the six cysteine residues in BnSnRK2.6-2C, C159 was found to have different types of thiol modifications, suggesting its high redox sensitivity and versatility. In addition, mBBr labeling on tyrosine residues was identified. Collectively, these data provide detailed biochemical characterization of redox-induced modifications and changes of the BnSnRK2.6-2C activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。