Ultra-sensitive detection of ecologically rare fish from eDNA samples based on the RPA-CRISPR/Cas12a technology

基于 RPA-CRISPR/Cas12a 技术从 eDNA 样本中对生态稀有鱼类进行超灵敏检测

阅读:5
作者:Xing-Yi Wei, Li Liu, Huan Hu, Huang-Jie Jia, Ling-Kang Bu, De-Sheng Pei

Abstract

Environmental DNA (eDNA) research holds great promise for improving biodiversity science and conservation efforts by enabling worldwide species censuses in near real-time. Current eDNA methods face challenges in detecting low-abundance ecologically important species. In this study, we used isothermal recombinase polymerase amplification (RPA)-CRISPR/Cas detection to test Ctenopharyngodon idella. RPA-CRISPR-Cas12a detected 6.0 eDNA copies/μL within 35 min. Ecologically rare species were identified in the Three Gorges Reservoir Area (TGRA) using functional distinctiveness and geographical restrictiveness, with seven fish species (9%) classified as potentially ecologically rare including three species in this investigation. RPA-CRISPR/Cas12a-FQ outperformed high-throughput sequencing (HTS) and qPCR in detecting low-abundance eDNA (AUC = 0.883∗∗). A significant linear correlation (R2 = 0.682∗∗) between RPA-CRISPR/Cas12a-FQ and HTS quantification suggests its potential for predicting species abundance and enhancing eDNA-based fish biodiversity monitoring. This study highlights the value of RPA-CRISPR/Cas12a-FQ as a tool for advancing eDNA research and conservation efforts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。