The heat shock cognate protein hsc73 assembles with A(1) adenosine receptors to form functional modules in the cell membrane

热休克同源蛋白 hsc73 与 A(1) 腺苷受体组装形成细胞膜上的功能模块

阅读:10
作者:S Sarrió, V Casadó, M Escriche, F Ciruela, J Mallol, E I Canela, C Lluis, R Franco

Abstract

A(1) adenosine receptors (A(1)Rs) are G protein-coupled heptaspanning receptors that interact at the outer face of the plasma membrane with cell surface ecto-adenosine deaminase (ecto-ADA). By affinity chromatography the heat shock cognate protein hsc73 was identified as a cytosolic component able to interact with the third intracellular loop of the receptor. As demonstrated by surface plasmon resonance, purified A(1)Rs interact specifically with hsc73 with a dissociation constant in the nanomolar range (0.5 +/- 0.1 nM). The interaction between hsc73 and A(1)R led to a marked reduction in the binding of the ligands and prevented activation of G proteins, as deduced from (35)S-labeled guanosine-5'-O-(3-thio)triphosphate binding assays. Interestingly this effect was stronger than that exerted by guanine nucleotide analogs, which uncouple receptors from G proteins, and was completely prevented by ADA. As assessed by immunoprecipitation a high percentage of A(1)Rs in cell lysates are coupled to hsc73. A relatively high level of colocalization between A(1)R and hsc73 was detected in DDT(1)MF-2 cells by means of confocal microscopy, and no similar results were obtained for other G protein-coupled receptors. Colocalization between hsc73 and A(1)R was detected in specific regions of rat cerebellum and in the body of cortical neurons but not in dendrites or synapses. Remarkably, agonist-induced receptor internalization leads to the endocytosis of A(1)Rs by two qualitatively different vesicle types, one in which A(1)R and hsc73 colocalize and another in which hsc73 is absent. These results open the interesting possibility that signaling via G protein-coupled receptors may be regulated by heat shock proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。