Correlative Imaging of Three-Dimensional Cell Culture on Opaque Bioscaffolds for Tissue Engineering Applications

用于组织工程应用的不透明生物支架上三维细胞培养的相关成像

阅读:7
作者:Mone't Sawyer, Josh Eixenberger, Olivia Nielson, Jacob Manzi, Cadré Francis, Raquel Montenegro-Brown, Harish Subbaraman, David Estrada

Abstract

Three-dimensional (3D) tissue engineering (TE) is a prospective treatment that can be used to restore or replace damaged musculoskeletal tissues, such as articular cartilage. However, current challenges in TE include identifying materials that are biocompatible and have properties that closely match the mechanical properties and cellular microenvironment of the target tissue. Visualization and analysis of potential 3D porous scaffolds as well as the associated cell growth and proliferation characteristics present additional problems. This is particularly challenging for opaque scaffolds using standard optical imaging techniques. Here, we use graphene foam (GF) as a 3D porous biocompatible substrate, which is scalable, reproducible, and a suitable environment for ATDC5 cell growth and chondrogenic differentiation. ATDC5 cells are cultured, maintained, and stained with a combination of fluorophores and gold nanoparticles to enable correlative microscopic characterization techniques, which elucidate the effect of GF properties on cell behavior in a 3D environment. Most importantly, the staining protocol allows for direct imaging of cell growth and proliferation on opaque scaffolds using X-ray MicroCT, including imaging growth of cells within the hollow GF branches, which is not possible with standard fluorescence and electron microscopy techniques.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。