Ribosomal protein L4 of Lactobacillus rhamnosus LRB alters resistance to macrolides and other antibiotics

鼠李糖乳杆菌 LRB 的核糖体蛋白 L4 改变对大环内酯类和其他抗生素的耐药性

阅读:7
作者:Saswati Biswas, Andrew Keightley, Indranil Biswas

Abstract

Lactobacillus rhamnosus is an important lactic acid bacterium that is predominantly used as a probiotic supplement. This bacterium secretes immunomodulatory and antibacterial peptides that are necessary for the probiotic trait. This organism also occupies diverse ecological niches, such as gastrointestinal tracts and the oral cavity. Several studies have shown that L. rhamnosus is prone to spontaneous genome rearrangement irrespective of the ecological origins. We previously characterized an oral isolate of L. rhamnosus, LRB, which is genetically closely related to the widely used probiotic strain L. rhamnosus LGG. In this study, we isolated a nontargeted mutant that was particularly sensitive to acid stress. Using next generation sequencing, we further mapped the putative mutations in the genome and found that the mutant had acquired a deletion of 75 base pairs in the rplD gene that encodes the large ribosomal subunit L4. The mutant had a growth defect at 37°C and at ambient temperature. Further antibiotic sensitivity analyses indicated that the mutant is relatively more resistant to erythromycin and chloramphenicol; two antibiotics that target the 50S subunit. In contrast, the mutant was more sensitive to tetracycline, which targets the 30S subunit. Thus, it appears that nontargeted mutations could significantly alter the antibiotic resistance profile of L. rhamnosus. Our study raises concern that probiotic use of L. rhamnosus should be carefully monitored to avoid unintended consequences.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。