Phosphorylated cortactin recruits Vav2 guanine nucleotide exchange factor to activate Rac3 and promote invadopodial function in invasive breast cancer cells

磷酸化的皮质蛋白募集 Vav2 鸟嘌呤核苷酸交换因子来激活 Rac3 并促进侵袭性乳腺癌细胞中的侵袭性足功能

阅读:6
作者:Brian J Rosenberg, Hava Gil-Henn, Christopher C Mader, Tiffany Halo, Taofei Yin, John Condeelis, Kazuya Machida, Yi I Wu, Anthony J Koleske

Abstract

Breast carcinoma cells use specialized, actin-rich protrusions called invadopodia to degrade and invade through the extracellular matrix. Phosphorylation of the actin nucleation-promoting factor and actin-stabilizing protein cortactin downstream of the epidermal growth factor receptor-Src-Arg kinase cascade is known to be a critical trigger for invadopodium maturation and subsequent cell invasion in breast cancer cells. The functions of cortactin phosphorylation in this process, however, are not completely understood. We identify the Rho-family guanine nucleotide exchange factor Vav2 in a comprehensive screen for human SH2 domains that bind selectively to phosphorylated cortactin. We demonstrate that the Vav2 SH2 domain binds selectively to phosphotyrosine-containing peptides corresponding to cortactin tyrosines Y421 and Y466 but not to Y482. Mutation of the Vav2 SH2 domain disrupts its recruitment to invadopodia, and an SH2-domain mutant form of Vav2 cannot support efficient matrix degradation in invasive MDA-MB-231 breast cancer cells. We show that Vav2 function is required for promoting invadopodium maturation and consequent actin polymerization, matrix degradation, and invasive migratory behavior. Using biochemical assays and a novel Rac3 biosensor, we show that Vav2 promotes Rac3 activation at invadopodia. Rac3 knockdown reduces matrix degradation by invadopodia, whereas a constitutively active Rac3 can rescue the deficits in invadopodium function in Vav2-knockdown cells. Together these data indicate that phosphorylated cortactin recruits Vav2 to activate Rac3 and promote invadopodial maturation in invasive breast cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。