Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency

阐明光合作用和气孔导度对提高森林水分利用效率的作用

阅读:9
作者:Rossella Guerrieri, Soumaya Belmecheri, Scott V Ollinger, Heidi Asbjornsen, Katie Jennings, Jingfeng Xiao, Benjamin D Stocker, Mary Martin, David Y Hollinger, Rosvel Bracho-Garrillo, Kenneth Clark, Sabina Dore, Thomas Kolb, J William Munger, Kimberly Novick, Andrew D Richardson2

Abstract

Multiple lines of evidence suggest that plant water-use efficiency (WUE)-the ratio of carbon assimilation to water loss-has increased in recent decades. Although rising atmospheric CO2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American mature temperate forests. Our goal was to separate the contributions of enhanced photosynthesis and reduced stomatal conductance to WUE trends and to assess consistency between multiple commonly used methods for estimating WUE. Our results show that tree ring-derived estimates of increases in WUE are consistent with estimates from atmospheric measurements and predictions based on an optimal balancing of carbon gains and water costs, but are lower than those based on ecosystem-scale flux observations. Although both physiological mechanisms contributed to rising WUE, enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to species that experienced moisture limitations. This finding challenges the hypothesis that rising WUE in forests is primarily the result of widespread, CO2-induced reductions in stomatal conductance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。