Cell-surface processing of extracellular human immunodeficiency virus type 1 Vpr by proprotein convertases

前蛋白转化酶对细胞外人类免疫缺陷病毒 1 型 Vpr 进行细胞表面处理

阅读:6
作者:Yong Xiao, Gang Chen, Jonathan Richard, Nicole Rougeau, Hongshan Li, Nabil G Seidah, Eric A Cohen

Abstract

Increasing evidence suggests that extracellular Vpr could contribute to HIV pathogenesis through its effect on bystander cells. Soluble forms of Vpr have been detected in the sera and cerebrospinal fluids of HIV-1-infected patients, and in vitro studies have implicated extracellular Vpr as an effector of cellular responses, including G2 arrest, apoptosis and induction of cytokines and chemokines production, presumably through its ability to transduce into multiple cell types. However, the mechanism underlying Vpr release from HIV-1-producing cells remains undefined and the biological modifications that the extracellular protein may undergo are largely unknown. We provide evidence indicating that soluble forms of Vpr are present in the extracellular medium of HIV-1-producing cells. Release of Vpr in the extracellular medium did not originate from decaying or disrupted HIV-1 virions that package Vpr but rather appeared associated with HIV-1-mediated cytopathicity. Interestingly, Vpr was found to undergo proteolytic processing at a very well conserved proprotein convertase (PC) cleavage site, R(85)QRR(88) downward arrow, located within the functionally important C-terminal arginine-rich domain of the protein. Vpr processing occurred extracellularly upon close contact to cells and most likely involved a cell surface-associated PC. Consistently, PC inhibitors suppressed Vpr processing, while expression of extracellular matrix-associated PC5 and PACE4 enhanced Vpr cleavage. PC-mediated processing of extracellular Vpr led to the production of a truncated Vpr product that was defective for the induction of cell cycle arrest and apoptosis when expressed in human cells. Collectively, these results suggest that cell surface processing of extracellular Vpr by PCs might regulate the levels of active soluble Vpr.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。