A fluorinated analog of ISO-1 blocks the recognition and biological function of MIF and is orally efficacious in a murine model of colitis

ISO-1 的氟化类似物可阻断 MIF 的识别和生物学功能,并且在小鼠结肠炎模型中具有口服疗效

阅读:4
作者:Nilesh M Dagia, Divya V Kamath, Pooja Bhatt, Ravindra D Gupte, Shruta S Dadarkar, Lyle Fonseca, Gautam Agarwal, Anshu Chetrapal-Kunwar, Sarala Balachandran, Shaila Srinivasan, Julie Bose, Koteppa Pari, Chandrika B-Rao, Santosh S Parkale, Pradip K Gadekar, Atish H Rodge, Noopur Mandrekar, Ram A Vishw

Abstract

A promising therapeutic approach to diminish pathological inflammation is to inhibit the synthesis and/or biological activity of macrophage migration inhibitory factor (MIF). Prior studies have shown that intraperitoneal administration of small-molecule inhibitors targeting the catalytic pocket of MIF (e.g., ISO-1) elicits a therapeutic effect in mouse inflammation models. However, it remains to be elucidated whether these tautomerase activity inhibitors block the synthesis and/or biological activity of MIF. In this study, we investigated and compared the activity of representative MIF inhibitors from isoxazole series (fluorinated analog of ISO-1; ISO-F) and substituted quinoline series (compound 7E; 7E). Our results demonstrate that ISO-F is a more potent MIF inhibitor than 7E. Both ISO-F and 7E do not inhibit MIF synthesis but "bind-onto" MIF thereby blocking its recognition. However, in contrast to 7E, ISO-F docks well in the active site of MIF and also has a stronger binding affinity towards MIF. In line with these observations, ISO-F, but not 7E, robustly inhibits the biological function of MIF. Most importantly, ISO-F, when administered orally in a therapeutic regimen, significantly suppresses dextran sulphate sodium (DSS)-induced murine colitis. This study, which provides mechanistic insights into the anti-inflammatory efficacy of ISO-F, is the first documented report of in vivo anti-inflammatory efficacy of a MIF inhibitor upon oral administration. Moreover, the findings from this study reinforce the potential of catalytic site of MIF as a target for eliciting therapeutic effect in inflammatory disorders. Compounds (e.g., ISO-F) that block not only the recognition but also the biological function of MIF are potentially attractive for reducing pathological inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。