Aerobic Exercise Training Prevents Perivascular Adipose Tissue-Induced Endothelial Dysfunction in Thoracic Aorta of Obese Mice

有氧运动训练可预防肥胖小鼠胸主动脉血管周围脂肪组织诱发的内皮功能障碍

阅读:5
作者:Andressa S Sousa, Amanda C S Sponton, César B Trifone, Maria A Delbin

Background

The mechanisms underlying the perivascular adipose tissue (PVAT) dysfunction in obesity are closely related to inflammation and oxidative stress. The present study aimed to investigate the effects of aerobic exercise training on PVAT-induced endothelial dysfunction of thoracic aorta of obese mice.

Conclusion

The PVAT-induced endothelial dysfunction in thoracic aorta of obese mice, associated with circulatory inflammation and oxidative stress. Aerobic exercise training upregulated the anti-oxidant expression and decreased PVAT oxidative stress with beneficial impact on endothelium-dependent relaxation.

Methods

Male mice C57BL6/JUnib (6-7 weeks) were divided into: sedentary (c-SD), trained (c-TR), obese sedentary (o-SD), and obese trained (o-TR). Obesity was induced by 16 weeks of high-fat diet and exercise training of moderate intensity started after 8 weeks of protocol and was performed on a treadmill, 5 days/week, for more 8 weeks, 60 min per session. The vascular responsiveness was performed in thoracic aorta in the absence (PVAT-) or in the presence (PVAT+) of PVAT. We analyzed circulatory parameters, protein expression, vascular nitric oxide (NO) production, and reactive oxygen species (ROS) in PVAT.

Results

The maximal responses to acetylcholine (ACh) were reduced in PVAT+ compared with PVAT- rings in the o-SD group, accompanied by an increase in circulating glucose, insulin, resistin, leptin, and TNF-α. Additionally, the protein expression of iNOS and generation of ROS were increased in PVAT and production of vascular NO was reduced in the o-SD group compared with c-SD. In the o-TR group, the relaxation response to ACh was completely restored and the circulatory TNF-α, iNOS protein expression, and ROS were normalized with increased expression of Mn-SOD in PVAT, resulting in enhanced vascular NO production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。