Characterization of α-Glucosidases From Lutzomyia longipalpis Reveals Independent Hydrolysis Systems for Plant or Blood Sugars

长须罗非鱼的 α-葡萄糖苷酶表征揭示植物或血糖的独立水解系统

阅读:8
作者:Samara G da Costa, Paul Bates, Rod Dillon, Fernando Ariel Genta

Abstract

Lutzomyia longipalpis is the main vector of Leishmania infantum and exploits different food sources during development. Adults have a diet rich in sugars, and females also feed on blood. The sugar diet is essential for maintaining longevity, infection, and Leishmaniasis transmission. Carbohydrases, including α-glucosidases, are the main enzymes involved in the digestion of sugars. In this context, we studied the modulation of α-glucosidase activities in different feeding conditions and compartments of Lutzomyia longipalpis females, in order to characterize in detail their roles in the physiology of this insect. All tissues showed activity against MUαGlu and sucrose, with highest activities in the midgut and crop. Activity was 1,000 times higher on sucrose than on MUαGlu. Basal activities were observed in non-fed insects; blood feeding induced activity in the midgut contents, and sugar feeding modulated activity in midgut tissues. α-glucosidase activity changed after female exposure to different sugar concentrations or moieties. α-glucosidases from different tissues showed different biochemical properties, with an optimum pH around 7.0-8.0 and K M between 0.37 and 4.7 mM, when MUαGlu was used as substrate. Using sucrose as substrate, the optimum pH was around 6.0, and K M ranges between 11 and 800 mM. Enzymes from the crop and midgut tissues showed inhibition in high substrate concentrations (sucrose), with K I ranging from 39 to 400 mM, which explains the high K M values found. Chromatographic profiles confirmed that different α-glucosidases are been produced in L. longipalpis in different physiological contexts, with the distinction of at least four α-glucosidases. The results suggest that some of these enzymes are involved in different metabolic processes, like digestion of plant sugars, digestion of blood glycoproteins or glycolipids, and mobilization of energetic storages during starvation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。