Combined computational and experimental analysis of a complex of ribonuclease III and the regulatory macrodomain protein, YmdB

核糖核酸酶 III 与调节宏域蛋白 YmdB 复合物的计算和实验综合分析

阅读:7
作者:Samridhdi Paudyal, Mercedes Alfonso-Prieto, Vincenzo Carnevale, Shiv K Redhu, Michael L Klein, Allen W Nicholson

Abstract

Ribonuclease III is a conserved bacterial endonuclease that cleaves double-stranded(ds) structures in diverse coding and noncoding RNAs. RNase III is subject to multiple levels of control that in turn confer global post-transcriptional regulation. The Escherichia coli macrodomain protein YmdB directly interacts with RNase III, and an increase in YmdB amount in vivo correlates with a reduction in RNase III activity. Here, a computational-based structural analysis was performed to identify atomic-level features of the YmdB-RNase III interaction. The docking of monomeric E. coli YmdB with a homology model of the E. coli RNase III homodimer yields a complex that exhibits an interaction of the conserved YmdB residue R40 with specific RNase III residues at the subunit interface. Surface Plasmon Resonance (SPR) analysis provided a KD of 61 nM for the complex, corresponding to a binding free energy (ΔG) of -9.9 kcal/mol. YmdB R40 and RNase III D128 were identified by in silico alanine mutagenesis as thermodynamically important interacting partners. Consistent with the prediction, the YmdB R40A mutation causes a 16-fold increase in K(D) (ΔΔG = +1.8 kcal/mol), as measured by SPR, and the D128A mutation in both RNase III subunits (D128A/D128'A) causes an 83-fold increase in KD (ΔΔG = +2.7 kcal/mol). The greater effect of the D128A/D128'A mutation may reflect an altered RNase III secondary structure, as revealed by CD spectroscopy, which also may explain the significant reduction in catalytic activity in vitro. The features of the modeled complex relevant to potential RNase III regulatory mechanisms are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。