Modulation of NF-κB and hypoxia-inducible factor--1 by S-nitrosoglutathione does not alter allergic airway inflammation in mice

S-亚硝基谷胱甘肽对 NF-κB 和缺氧诱导因子-1 的调节不会改变小鼠过敏性气道炎症

阅读:6
作者:Nels Olson, David I Kasahara, Milena Hristova, Risa Bernstein, Yvonne Janssen-Heininger, Albert van der Vliet

Abstract

Induction of nitric oxide synthase (NOS)-2 and production of nitric oxide (NO) are common features of allergic airway disease. Conditions of severe asthma are associated with deficiency of airway S-nitrosothiols, a biological product of NO that can suppress inflammation by S-nitrosylation of the proinflammatory transcription factor, NF-κB. Therefore, restoration of airway S-nitrosothiols might have therapeutic benefit, and this was tested in a mouse model of ovalbumin (OVA)-induced allergic inflammation. Naive or OVA-sensitized animals were administered S-nitrosoglutathione (GSNO; 50 μl, 10 mM) intratracheally before OVA challenge and analyzed 48 hours later. GSNO administration enhanced lung tissue S-nitrosothiol levels and reduced NF-κB activity in OVA-challenged animals compared with control animals, but did not lead to significant changes in total bronchoalveolar lavage cell counts, differentials, or mucus metaplasia markers. Administration of GSNO also altered the activation of hypoxia-inducible factor (HIF)-1, leading to HIF-1 activation in naive mice, but suppressed HIF-1 activation in OVA-challenged mice. We assessed the contribution of endogenous NOS2 in regulating NF-κB and/or HIF-1 activation and allergic airway inflammation using NOS2(-/-) mice. Although OVA-induced NF-κB activation was slightly increased in NOS2(-/-) mice, associated with small increases in bronchoalveolar lavage neutrophils, other markers of allergic inflammation and HIF-1 activation were similar in NOS2(-/-) and wild-type mice. Collectively, our studies indicate that instillation of GSNO can suppress NF-κB activation during allergic airway inflammation, but does not significantly affect overall markers of inflammation or mucus metaplasia, thus potentially limiting its therapeutic potential due to effects on additional signaling pathways, such as HIF-1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。