Synthesize heterogeneous biological knowledge via representation learning for Alzheimer's disease drug repurposing

通过表征学习综合异构生物学知识,用于阿尔茨海默病药物再利用

阅读:3
作者:Kang-Lin Hsieh, German Plascencia-Villa, Ko-Hong Lin, George Perry, Xiaoqian Jiang, Yejin Kim

Abstract

Developing drugs for treating Alzheimer's disease has been extremely challenging and costly due to limited knowledge of underlying mechanisms and therapeutic targets. To address the challenge in AD drug development, we developed a multi-task deep learning pipeline that learns biological interactions and AD risk genes, then utilizes multi-level evidence on drug efficacy to identify repurposable drug candidates. Using the embedding derived from the model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, efficacy in preclinical models, population-based treatment effects, and clinical trials. We mechanistically validated the top-ranked candidates in neuronal cells, identifying drug combinations with efficacy in reducing oxidative stress and safety in maintaining neuronal viability and morphology. Our neuronal response experiments confirmed several biologically efficacious drug combinations. This pipeline showed that harmonizing heterogeneous and complementary data/knowledge, including human interactome, transcriptome patterns, experimental efficacy, and real-world patient data shed light on the drug development of complex diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。