Patterned Carboxymethyl-Dextran Functionalized Surfaces Using Organic Mixed Monolayers for Biosensing Applications

利用有机混合单分子层进行图案化羧甲基葡聚糖功能化表面的生物传感应用

阅读:12
作者:Elena Ambrosetti, Martina Conti, Ana I Teixeira, Simone Dal Zilio

Abstract

The deposition of biomolecules on biosensing surface platforms plays a key role in achieving the required sensitivity and selectivity for biomolecular interactions analysis. Controlling the interaction between the surface and biomolecules is increasingly becoming a crucial design tool to modulate the surface properties needed to improve the performance of the assay and the detection outcome. Carboxymethyl-dextran (CMD) coating can be exploited to promote chemical grafting of proteins, providing a hydrophilic, bioinert, nonfouling surface and a high surface density of immobilized proteins. In the present work, we developed and optimized a technique to produce a cost-effective CMD-based patterned surface for the immobilization of biomolecules to be used on standard protocols optimization. They consist of silicon or glass substrates with patterned bioactive areas able to efficiently confine the sampling solution by simply exploiting hydrophilic/hydrophobic patterning of the surface. The fabrication process involves the use of low-cost instruments and techniques, compatible with large scale production. The devices were validated through a chemiluminescence assay we recently developed for the analysis of binding of DNA nanoassemblies modified with an affinity binder to target proteins immobilized on the bioactive areas. Through this assay we were able to characterize the chemical reactivity of two target proteins toward a dextran matrix on patterned surfaces and to compare it with model CMD-based surface plasmon resonance (SPR) surfaces. We found a high reproducibility and selectivity in molecular recognition, consistent with results obtained on SPR sensor surfaces. The suggested approach is straightforward, cheap, and provides the means to assess patterned functionalized surfaces for bioanalytical platforms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。