Significance
Approximately 100 million U.S. adults are burdened by chronic pain. Neuropathic pain resulting from injury or dysfunction of the nervous system is challenging to treat. Unlike acute pain that resolves over time, chronic pain persists resulting in changes in the peripheral and central nervous system. The transport of biomolecular cargo comprised of proteins and RNAs by small extracellular vesicles (sEVs) including exosomes has been proposed to be a fundamental mode of intercellular communication. To obtain insights on the role of exosome-mediated information transfer in the context of neuropathic pain, we investigated alterations in protein composition of sEVs in a mouse model of neuropathic pain induced by spared nerve injury (SNI). Our studies using mass spectrometry and cytokine array show that sEVs from SNI model harbor unique proteins. We observed an upregulation of C5a and ICAM-1 in exosomes from SNI model compared to control. There was a differential distribution of C5a and ICAM-1 within exosomes and serum, between control and SNI suggesting a switch from local to long distance signaling. Our studies suggest critical roles for cargo sorting of vesicular proteins in mediating signaling under neuropathic pain.
