MDA-9/Syntenin regulates differentiation and angiogenesis programs in head and neck squamous cell carcinoma

MDA-9/Syntenin 调节头颈部鳞状细胞癌的分化和血管生成程序

阅读:6
作者:Regina A Oyesanya #, Shilpa Bhatia #, Mitchell E Menezes #, Catherine I Dumur, Karan P Singh, Sejong Bae, Dean A Troyer, Robert B Wells, Edward R Sauter, David Sidransky, Paul B Fisher, Oliver J Semmes, Santanu Dasgupta

Abstract

Little is known about the molecular pathways regulating poor differentiation and invasion of head and neck squamous cell carcinoma (HNSCC). In the present study, we aimed to determine the role of MDA-9/Syntenin, a metastasis associated molecule in HNSCC tumorigenesis. Elevated MDA-9/Syntenin expression was evident in 67% (54/81) primary HNSCC tumors (p=0.001-0.002) and 69% (9/13) pre-neoplastic tissues (p=0.02-0.03). MDA-9/Syntenin overexpression was associated with the stage (p=0.001), grade (p=0.001) and lymph node metastasis (p=0.0001). Silencing of MDA-9/Syntenin in 3 poorly differentiated HNSCC cell lines induced squamous epithelial cell differentiation, disrupted angiogenesis and reduced tumor growth in vitro and in vivo. We confirmed SPRR1B and VEGFR1 as the key molecular targets of MDA-9/Syntenin on influencing HNSCC differentiation and angiogenesis respectively. MDA-9/Syntenin disrupted SPRR1B expression interacting through its PDZ1 domain and altered VEGFR1 expression in vitro and in vivo. VEGFR1 co-localized with MDA-9/Syntenin in HNSCC cell lines and primary tumor. Downregulation of growth regulatory molecules CyclinD1, CDK4, STAT3, PI3K and CTNNB1 was also evident in the MDA-9/Syntenin depleted cells, which was reversed following over-expression of MDA-9/Syntenin in immortalized oral epithelial cells. Our results suggest that early induction of MDA-9/Syntenin expression influences HNSCC progression and should be further evaluated for potential biomarker development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。