Somatostatin signalling promotes the differentiation of rod photoreceptors in human pluripotent stem cell-derived retinal organoid

生长抑素信号促进人类多能干细胞衍生的视网膜类器官中杆状光感受器的分化

阅读:6
作者:Mingkang Chen, Xiying Mao, Darui Huang, Jiaona Jing, Wenjun Zou, Peiyao Mao, Mengting Xue, Wenjie Yin, Ruiwen Cheng, Yan Gao, Youjin Hu, Songtao Yuan, Qinghuai Liu

Conclusions

Our study identified SSTR2 signalling as a novel extrinsic regulator for rod photoreceptor fate determination in photoreceptor precursors, which expands the repertoire of functional signalling pathways in photoreceptor development and sheds light on the optimization of the photoreceptor enrichment strategy.

Methods

3D retinal organoids were achieved from human embryonic stem cell. The published single-cell RNA-sequencing datasets of human retinal development were utilized to further investigate the transcriptional regulation of photoreceptor differentiation. The assays of immunofluorescence staining, lentivirus transfection, real-time quantitative polymerase chain reaction and western blotting were performed.

Results

We identified that the somatostatin receptor 2 (SSTR2)-mediated signalling was essential for rod photoreceptor differentiation at the precursor stage. The addition of the cognate ligand somatostatin in human 3D retinal organoids promoted rod photoreceptor differentiation and inhibited cone photoreceptor production. Furthermore, we found that the genesis of rod photoreceptors was modulated by endogenous somatostatin specifically secreted by developing retinal ganglion cells. Conclusions: Our study identified SSTR2 signalling as a novel extrinsic regulator for rod photoreceptor fate determination in photoreceptor precursors, which expands the repertoire of functional signalling pathways in photoreceptor development and sheds light on the optimization of the photoreceptor enrichment strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。