Intergenerational Effects of Sevoflurane in Young Adult Rats

七氟醚对年轻成年大鼠的代际影响

阅读:8
作者:Ling-Sha Ju, Jiao-Jiao Yang, Ning Xu, Jia Li, Timothy E Morey, Nikolaus Gravenstein, Christoph N Seubert, Barry Setlow, Anatoly E Martynyuk

Background

Sevoflurane administered to neonatal rats induces neurobehavioral abnormalities and epigenetic reprogramming of their germ cells; the latter can pass adverse effects of sevoflurane to future offspring. As germ cells are susceptible to reprogramming by environmental factors across the lifespan, the authors hypothesized that sevoflurane administered to adult rats could induce neurobehavioral abnormalities in future offspring, but not in the exposed rats themselves.

Conclusions

Adult sevoflurane exposure affects brain development in male offspring by epigenetically reprogramming both parental germ cells, while it induces neuroendocrine and behavioral abnormalities only in exposed males. Sex steroids may be required for mediation of the adverse effects of adult sevoflurane in exposed males.

Methods

Sprague-Dawley rats were anesthetized with 2.1% sevoflurane for 3 h every other day between postnatal days 56 and 60. Twenty-five days later, exposed rats and nonexposed controls were mated to produce offspring.

Results

Adult male but not female offspring of exposed parents of either sex exhibited deficiencies in elevated plus maze (mean ± SD, offspring of both exposed parents vs. offspring of control parents, 35 ± 12 vs. 15 ± 15 s, P < 0.001) and prepulse inhibition of acoustic startle (offspring of both exposed parents vs. offspring of control parents, 46.504 ± 13.448 vs. 25.838 ± 22.866%, P = 0.009), and increased methylation and reduced expression of the potassium ion-chloride ion cotransporter KCC2 gene (Kcc2) in the hypothalamus. Kcc2 was also hypermethylated in sperm and ovary of the exposed rats. Surprisingly, exposed male rats also exhibited long-term abnormalities in functioning of the hypothalamic-pituitary-gonadal and -adrenal axes, reduced expression of hypothalamic and hippocampal Kcc2, and deficiencies in elevated plus maze (sevoflurane vs. control, 40 ± 24 vs. 25 ± 12 s, P = 0.038) and prepulse inhibition of startle (sevoflurane vs. control, 39.905 ± 21.507 vs. 29.193 ± 24.263%, P < 0.050). Conclusions: Adult sevoflurane exposure affects brain development in male offspring by epigenetically reprogramming both parental germ cells, while it induces neuroendocrine and behavioral abnormalities only in exposed males. Sex steroids may be required for mediation of the adverse effects of adult sevoflurane in exposed males.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。