SAMHD1 Inhibits Multiple Enteroviruses by Interfering with the Interaction between VP1 and VP2 Proteins

SAMHD1 通过干扰 VP1 和 VP2 蛋白之间的相互作用来抑制多种肠道病毒

阅读:13
作者:Zhilei Zhao #, Zhaolong Li #, Chen Huan #, Xin Liu, Wenyan Zhang

Abstract

Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) possesses multiple biological activities such as virus restriction, innate immunity regulation, and autoimmunity. Our previous study demonstrated that SAMHD1 potently inhibits the replication of enterovirus 71 (EV71). In this study, we observed that SAMHD1 also restricts multiple enteroviruses (EVs), including coxsackievirus A16 (CA16) and enterovirus D68 (EVD68), but not coxsackievirus A6 (CA6). Mechanistically, SAMHD1 competitively interacted with the same domain in VP1 that binds to VP2 of EV71 and EVD68, thereby interfering with the interaction between VP1 and VP2 , and therefore viral assembly. Moreover, we showed that the SAMHD1 T592A mutant maintained the EV71 inhibitory effect by attenuating the interaction between VP1 and VP2, whereas the T592D mutant failed to. We also demonstrated that SAMHD1 could not inhibit CA6 because a different binding site is required for the SAMHD1 and VP1 interaction. Our findings reveal the mechanism of SAMHD1 inhibition of multiple EVs, and this could potentially be important for developing drugs against a broad range of EVs. IMPORTANCE Enterovirus causes a wide variety of diseases, such as hand, foot, and mouth disease (HFMD), which is a severe public problem threatening children under 5 years. Therefore, identifying essential genes which restrict EV infection and exploring the underlying mechanisms are necessary to develop an effective strategy to inhibit EV infection. In this study, we report that host restrictive factor SAMHD1 has broad-spectrum antiviral activity against EV71, CA16, and EVD68 independent of its well-known deoxynucleoside triphosphate triphosphohydrolase (dNTPase) or RNase activity. Mechanistically, SAMHD1 restricts EVs by competitively interacting with the same domain in VP1 that binds to VP2 of EVs, thereby interfering with the interaction between VP1 and VP2, and therefore viral assembly. In contrast, we also demonstrated that SAMHD1 could not inhibit CA6 because a different binding site is required for the SAMHD1 and CA6 VP1 interaction. Our study reveals a novel mechanism for the SAMHD1 anti-EV replication activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。