Conclusions
Divers encounter IGN at - 48 msw, exhibiting a marked loss in circulating dopamine levels, likely accounting for BDNF-dependent impairment of mental capacity and heightened OxS. The decline in dopamine and BDNF appears to persist at decompression; thus, boosting dopamine/BDNF signaling via pharmacological or other intervention types might attenuate IGN in deep dives.
Methods
To mimic IGN, we administered a deep narcosis test via a dry dive test (DDT) at 48 msw in a multiplace hyperbaric chamber to six well-trained divers. We collected: (1) saliva samples before DDT (T0), 25 msw (descending, T1), 48 msw (depth, T2), 25 msw (ascending, T3), 10 min after decompression (T4) to dopamine and/or reactive oxygen species (ROS) levels; (2) blood and urine samples at T0 and T4 for OxS too. We administered cognitive tests at T0, T2, and re-evaluated the divers at T4.
Purpose
Divers can experience cognitive impairment due to inert gas narcosis (IGN) at depth. Brain-derived neurotrophic factor (BDNF) rules neuronal connectivity/metabolism to maintain cognitive function and protect tissues against oxidative stress (OxS). Dopamine and glutamate enhance BDNF bioavailability. Thus, we hypothesized that lower circulating BDNF levels (via lessened dopamine and/or glutamate release) underpin IGN in divers, while testing if BDNF loss is associated with increased OxS.
Results
At 48 msw, all subjects experienced IGN, as revealed by the cognitive test failure. Dopamine and total antioxidant capacity (TAC) reached a nadir at T2 when ROS emission was maximal. At decompression (T4), a marked drop of BDNF/glutamate content was evidenced, coinciding with a persisting decline in dopamine and cognitive capacity. Conclusions: Divers encounter IGN at - 48 msw, exhibiting a marked loss in circulating dopamine levels, likely accounting for BDNF-dependent impairment of mental capacity and heightened OxS. The decline in dopamine and BDNF appears to persist at decompression; thus, boosting dopamine/BDNF signaling via pharmacological or other intervention types might attenuate IGN in deep dives.
