In vivo detection of stem cells grafted in infarcted rat myocardium

梗死大鼠心肌移植干细胞的体内检测

阅读:5
作者:Rong Zhou, Daniel H Thomas, Hui Qiao, Harshali S Bal, Seok-Rye Choi, Abass Alavi, Victor A Ferrari, Hank F Kung, Paul D Acton

Conclusion

This study demonstrated the feasibility of using dual-isotope pinhole SPECT for high-resolution detection of perfusion deficits with (99m)Tc-sestamibi and with (111)In-labeled stem cells grafted into the region of the infarct.

Methods

Three to 4 million rat embryonic cardiomyoblasts (H9c2 cells) were labeled with 11.1-14.8 MBq (0.3-0.4 mCi) of (111)In-oxyquinoline and then injected into the border zones of infarcted myocardium of rats. (111)In images were acquired with a SPECT scanner 2, 24, 48, 72, and 96 h after the stem cells were injected into the infarcted myocardium. To visualize the perfusion deficit in the infarcted myocardium, we injected 74 MBq (2 mCi) of (99m)Tc-sestamibi (Cardiolite) intravenously 48 h after grafting. Dual-isotope pinhole SPECT was used to image (99m)Tc-sestamibi uptake simultaneously with (111)In to delineate retention of (111)In-labeled stem cells. The presence of labeled stem cells was confirmed by autoradiography and histology.

Results

SPECT of (99m)Tc-sestamibi was used to delineate perfusion deficits and infarcted myocardium. Bull's-eye plots indicated that the (111)In signal from the labeled stem cells overlapped the perfusion deficits identified from the (99m)Tc-sestamibi images. The (111)In signal associated with the radiolabeled stem cells could be detected with SPECT of the heart for 96 h after engraftment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。