Redox Regulation of Pro-IL-1β Processing May Contribute to the Increased Severity of Serum-Induced Arthritis in NOX2-Deficient Mice

Pro-IL-1β 加工的氧化还原调节可能导致 NOX2 缺陷小鼠血清诱发关节炎的严重程度增加

阅读:7
作者:Ya-Fang Huang, Pei-Chi Lo, Chia-Liang Yen, Peter Andrija Nigrovic, Wen-Chen Chao, Wei-Zhi Wang, George Chengkang Hsu, Yau-Sheng Tsai, Chi-Chang Shieh

Aims

To elucidate the role of reactive oxygen species (ROS) in arthritis and to identify targets of arthritis treatment in conditions with different levels of oxidant stress.

Conclusion

Our results suggest that ROS act as a negative feedback to constrain IL-1β-mediated inflammation, accounting for the more severe arthritis in the absence of NOX2.

Results

Through establishing an arthritis model by injecting arthritogenic serum into wild-type and NADPH oxidase 2 (NOX2)-deficient mice, we found that arthritis had a neutrophilic infiltrate and was more severe in Ncf1(-/-) mice, a mouse strain lacking the expression of the NCF1/p47(phox) component of NOX2. The levels of interleukin-1β (IL-1β) and IL-6 in inflamed joints were higher in Ncf1(-/-) than in controls. Antagonists of tumor necrosis factor-α (TNFα) and IL-1β were equally effective in suppressing arthritis in wild-type mice, while IL-1β blockade was more effective than TNFα blockade in Ncf1(-/-) mice. A treatment of caspase inhibitor and the combination treatment of a caspase inhibitor and a cathepsin inhibitor, but not a cathepsin inhibitor alone, suppressed arthritic severity in the wild-type mice, while a treatment of cathepsin inhibitor and the combination treatment of a caspase inhibitor and a cathepsin inhibitor, but not a caspase inhibitor alone, were effective in treating Ncf1(-/-) mice. Consistently, cathepsin B was found to proteolytically process pro-IL-1β to its active form and this activity was suppressed by ROS. Innovation: This novel mechanism of a redox-mediated immune regulation of arthritis through leukocyte-produced ROS is important for devising an optimal treatment for patients with different levels of tissue ROS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。