High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model

高脂肪、高热量饮食促进条件性 KrasG12D 小鼠模型中的早期胰腺肿瘤

阅读:7
作者:David W Dawson, Kathleen Hertzer, Aune Moro, Graham Donald, Hui-Hua Chang, Vay Liang Go, Steven J Pandol, Aurelia Lugea, Anna S Gukovskaya, Gang Li, Oscar J Hines, Enrique Rozengurt, Guido Eibl

Abstract

There is epidemiologic evidence that obesity increases the risk of cancers. Several underlying mechanisms, including inflammation and insulin resistance, are proposed. However, the driving mechanisms in pancreatic cancer are poorly understood. The goal of the present study was to develop a model of diet-induced obesity and pancreatic cancer development in a state-of-the-art mouse model, which resembles important clinical features of human obesity, for example, weight gain and metabolic disturbances. Offspring of Pdx-1-Cre and LSL-KrasG12D mice were allocated to either a high-fat, high-calorie diet (HFCD; ∼4,535 kcal/kg; 40% of calories from fats) or control diet (∼3,725 kcal/kg; 12% of calories from fats) for 3 months. Compared with control animals, mice fed with the HFCD significantly gained more weight and developed hyperinsulinemia, hyperglycemia, hyperleptinemia, and elevated levels of insulin-like growth factor I (IGF-I). The pancreas of HFCD-fed animals showed robust signs of inflammation with increased numbers of infiltrating inflammatory cells (macrophages and T cells), elevated levels of several cytokines and chemokines, increased stromal fibrosis, and more advanced PanIN lesions. Our results show that a diet high in fats and calories leads to obesity and metabolic disturbances similar to humans and accelerates early pancreatic neoplasia in the conditional KrasG12D mouse model. This model and findings will provide the basis for more robust studies attempting to unravel the mechanisms underlying the cancer-promoting properties of obesity, as well as to evaluate dietary- and chemopreventive strategies targeting obesity-associated pancreatic cancer development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。