Major contribution of tubular secretion to creatinine clearance in mice

肾小管分泌对小鼠肌酐清除率的主要贡献

阅读:19
作者:Christoph Eisner, Robert Faulhaber-Walter, Yaohui Wang, Asada Leelahavanichkul, Peter S T Yuen, Diane Mizel, Robert A Star, Josephine P Briggs, Mark Levine, Jurgen Schnermann

Abstract

This study was performed to quantify the fraction of excreted creatinine not attributable to creatinine filtration for accurately determining the glomerular filtration rate in mice. To measure this we compared creatinine filtration with the simultaneous measurement of inulin clearance using both single-bolus fluorescein isothiocyanate (FITC)-inulin elimination kinetics and standard FITC-inulin infusion. During anesthesia, creatinine filtration was found to be systematically higher than inulin clearance in both male and female C57BL/6J mice. The secretion fraction was significantly less in female mice. Administration of either cimetidine or para-aminohippuric acid, competitors of organic cation and anion transport respectively, significantly reduced the secretion fraction in male and female mice and both significantly increased the plasma creatinine level. Creatinine secretion in both genders was not mediated by the organic cation transporters OCT1 or OCT 2 since secretion fraction levels were identical in FVB wild-type and OCT1/2 knockout mice. Thus, secretion accounts for about 50 and 35% of excreted creatinine in male and female mice, respectively. Increasing plasma creatinine threefold by infusion further increased the secretion fraction. Renal organic anion transporter 1 mRNA expression was higher in male than in female mice, reflecting the gender difference in creatinine secretion. Hence we show that there is a major secretory contribution to creatinine excretion mediated through the organic anion transport system. This feature adds to problems associated with measuring endogenous creatinine filtration in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。