Male triploid oysters of Crassostrea gigas exhibit defects in mitosis and meiosis during early spermatogenesis

雄性三倍体牡蛎在早期精子发生过程中表现出有丝分裂和减数分裂缺陷

阅读:5
作者:Floriane Maillard, Nicolas Elie, Nadège Villain-Naud, Mélanie Lepoittevin, Anne-Sophie Martinez, Christophe Lelong

Abstract

The Pacific oyster, Crassostrea gigas, is a successive irregular hermaphrodite mollusk which has an annual breeding cycle. Oysters are naturally diploid organisms, but triploid oysters have been developed for use in shellfish aquaculture, with the aim of obtaining sterile animals with commercial value. However, studies have shown that some triploid oysters are partially able to undergo gametogenesis, with numerous proliferating cells closed to diploids (3n alpha) or a partial one with an accumulation of locked germ cells (3n beta). The aim of our study therefore was to understand the regulation of spermatogenesis in both groups of triploid oysters (alpha and beta) from the beginning of spermatogenesis, during mitosis and meiosis events. Our results demonstrate that the reduced spermatogenesis in triploids results from a deregulation of the development of the germinal lineage and the establishment of the gonadal tract led by a lower number of tubules. Morphological cellular investigation also revealed an abnormal condensation of germ cell nuclei and the presence of clear patches in the nucleoplasm of triploid cells, which were more pronounced in beta oysters. Furthermore, studies of molecular and cellular regulation showed a downregulation of mitotic spindle checkpoint in beta oysters, resulting in disturbance of chromosomal segregation, notably on spindle assembly checkpoint involved in the binding of microtubules to chromosomes. Taken together, our results suggest that the lower reproductive ability of triploid oysters may be due to cellular and molecular events such as impairment of spermatogenesis and disruptions of mitosis and meiosis, occurring early and at various stages of the gametogenetic cycle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。