Mapping the dynamics of insulin-responsive pathways in the blood-brain barrier endothelium using time-series transcriptomics data

使用时间序列转录组学数据绘制血脑屏障内皮细胞胰岛素反应途径的动态

阅读:8
作者:Zengtao Wang #, Xiaojia Tang #, Suresh K Swaminathan, Karunya K Kandimalla, Krishna R Kalari

Abstract

Critical functions of the blood-brain barrier (BBB), including cerebral blood flow, energy metabolism, and immunomodulation, are regulated by insulin signaling pathways. Therefore, endothelial insulin resistance could lead to BBB dysfunction, which is associated with neurodegenerative diseases such as Alzheimer's disease (AD). The current study aims to map the dynamics of insulin-responsive pathways in polarized human cerebral microvascular endothelial cell (hCMEC/D3) monolayers. RNA-Sequencing was performed on hCMEC/D3 monolayers with and without insulin treatment at various time points. The Short Time-series Expression Miner (STEM) method was used to identify gene clusters with distinct and representative expression patterns. Functional annotation and pathway analysis of genes from selected clusters were conducted using Webgestalt and Ingenuity Pathway Analysis (IPA) software. Quantitative expression differences of 16,570 genes between insulin-treated and control monolayers were determined at five-time points. The STEM software identified 12 significant clusters with 6880 genes that displayed distinct temporal patterns upon insulin exposure, and the clusters were further divided into three groups. Gene ontology (GO) enrichment analysis demonstrated that biological processes protecting BBB functions such as regulation of vascular development and actin cytoskeleton reorganization were upregulated after insulin treatment (Group 1 and 2). In contrast, GO pathways related to inflammation, such as response to interferon-gamma, were downregulated (Group 3). The IPA analyses further identified insulin-responsive cellular and molecular pathways that are associated with AD pathology. These findings unravel the dynamics of insulin action on the BBB endothelium and inform about downstream signaling cascades that are potentially disrupted due to brain insulin resistance prevalent in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。