Increased BRAF heterodimerization is the common pathogenic mechanism for noonan syndrome-associated RAF1 mutants

BRAF 异二聚化增加是努南综合征相关 RAF1 突变的常见致病机制

阅读:7
作者:Xue Wu, Jiani Yin, Jeremy Simpson, Kyoung-Han Kim, Shengqing Gu, Jenny H Hong, Peter Bayliss, Peter H Backx, Benjamin G Neel, Toshiyuki Araki

Abstract

Noonan syndrome (NS) is a relatively common autosomal dominant disorder characterized by congenital heart defects, short stature, and facial dysmorphia. NS is caused by germ line mutations in several components of the RAS-RAF-MEK-extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway, including both kinase-activating and kinase-impaired alleles of RAF1 (∼3 to 5%), which encodes a serine-threonine kinase for MEK1/2. To investigate how kinase-impaired RAF1 mutants cause NS, we generated knock-in mice expressing Raf1(D486N). Raf1(D486N/+) (here D486N/+) female mice exhibited a mild growth defect. Male and female D486N/D486N mice developed concentric cardiac hypertrophy and incompletely penetrant, but severe, growth defects. Remarkably, Mek/Erk activation was enhanced in Raf1(D486N)-expressing cells compared with controls. RAF1(D486N), as well as other kinase-impaired RAF1 mutants, showed increased heterodimerization with BRAF, which was necessary and sufficient to promote increased MEK/ERK activation. Furthermore, kinase-activating RAF1 mutants also required heterodimerization to enhance MEK/ERK activation. Our results suggest that an increased heterodimerization ability is the common pathogenic mechanism for NS-associated RAF1 mutations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。