Molecular Profiles of Amyloid-β Proteoforms in Typical and Rapidly Progressive Alzheimer's Disease

典型和快速进展型阿尔茨海默病中淀粉样β蛋白的分子谱

阅读:4
作者:Aneeqa Noor #, Saima Zafar #, Mohsin Shafiq, Neelam Younas, Anna Siegert, Florian A Mann, Sebastian Kruss, Matthias Schmitz, Hassan Dihazi, Isidre Ferrer, Inga Zerr

Abstract

The molecular determinants of atypical clinical variants of Alzheimer's disease, including the recently discovered rapidly progressive Alzheimer's disease (rpAD), are unknown to date. Fibrilization of the amyloid-β (Aβ) peptide is the most frequently studied candidate in this context. The Aβ peptide can exist as multiple proteoforms that vary in their post-translational processing, amyloidogenesis, and toxicity. The current study was designed to identify these variations in Alzheimer's disease patients exhibiting classical (sAD) and rapid progression, with the primary aim of establishing if these variants may constitute strains that underlie the phenotypic variability of Alzheimer's disease. We employed two-dimensional polyacrylamide gel electrophoresis and MALDI-ToF mass spectrometry to validate and identify the Aβ proteoforms extracted from targeted brain tissues. The biophysical analysis was conducted using RT-QuIC assay, confocal microscopy, and atomic force microscopy. Interactome analysis was performed by co-immunoprecipitation. We present a signature of 33 distinct pathophysiological proteoforms, including the commonly targeted Aβ40, Aβ42, Aβ4-42, Aβ11-42, and provide insight into their synthesis and quantities. Furthermore, we have validated the presence of highly hydrophobic Aβ seeds in rpAD brains that seeded reactions at a slower pace in comparison to typical Alzheimer's disease. In vitro and in vivo analyses also verified variations in the molecular pathways modulated by brain-derived Aβ. These variations in the presence, synthesis, folding, and interactions of Aβ among sAD and rpAD brains constitute important points of intervention. Further validation of reported targets and mechanisms will aid in the diagnosis of and therapy for Alzheimer's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。